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ABSTRACT

This Report examines three analytic consequences of the nonlinear
Jeffcott equations. The primary application of these analyses is
directed toward understanding the excessive vibrations recorded in the
LOX pump of the SSME during hot firing ground testing.

The first task is to provide bounds on the coefficients of the
equations which delimit the two cases of the numerical solution as a
circle or an annulus.

The second task examines the mathematical generalization to
multiple forcing functions, which includes the special problems of mass
imbalance, side force, rubbing, and combinations of these forces.

Finally, stability and boundedness of the steady-state solutions
is discussed and related to the corresponding linear problem.
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1. INTRODUCTION

Beginning with Jeffcott's description of a rotating shaft's natural
frequency of lateral vibration [6], investigators have sought mathematical
explanations of observed vibrations in rotating machinery. In the linear
model of the motioﬁ'of the shaft's center of mass, only the frequency at
which the shaft is being driven appears in the steady-state solution except
in one special case where the natural frequency is exactly equal to the
square root of the ratio of the cross-stiffness and the damping. Otherwise,
the solution from the homogenous equation, the transcient portion of the
solution, either grows without bound, the case of an unbounded solution,
or it decays to zero, the case of a bounded solution.

One of the earliest investigators of rotordynamics which included
deadband was Yomamoto [8]. In the rotor, deadband refers to the load
carriers (ball bearings) and physically describes the clearance between
the outer race of the bearing and the support housing. Yomamoto's work
assumes that the response is simply a perturbation of the forcing function.
This is tantamount to assuming that one always has the solution graphically
depicted as a circle. Straight-forward numerical solutions using a Runge-
Kutta Fourth Order technique refute this assumption. Both empirical
results by Childs [1, 2] and Gupta et al. [5] as well as numerical
solutions by Control Dynamics Company [3] have provided insight in under-
standing the nonlinear rotor'!'s motion.

It was shown earlier [4] for the nonlinear Jeffcott equation, in
which the nonlinearity in induced by deadband and appears in the equations
in the form (1 - &/r)w, that the equation possesses an analytic flexibility
which provides a capability of producing a contribution to the steady-state
solution whenever the ratio of the cross-stiffness to the damping lies
between the values of the square root of the seal stiffness and the square
root of the sum of the seal stiffness and the bearing stiffness (the
natural frequency). '

This Report extends the earlier work in several directions. First,
it is necessary to generalize mathematically the Jeffcott equations to
allow multiple forcing functions and to examine the implications of these
extensions to the asymptotic expansions one uses in approximating the



solution of the equations. Section 2 contains a summary of earlier
analytic derivations and the necessary extensions for asymptotic
expansions. It is also shown in Section 2 that the cases of mass
imbalance, side force, rubbing and any combination of these forcing
functions are all special cases of the multiple forcing function problem.

It was shown in [4] that the nonlinear frequency, that frequency
which arises when the homogeneous equation provides a part of the total
steady-state solution, can be absent or present depending on the magni-
tude of the forcing function. ©Section 3 of this Report contains two
theorems which provide inequalities on the coefficients of the differen-
tial equations and the magnitude of the forcing function. These
inequalities are useful in deciding a priori whether a given set of
equation parameters will produce a steady-state response which depends
solely on the forcing function (graphically, a circle) or a response
which also includes a nonlinear frequency term (graphically, an annulus).
Several numerical examples along with frequency-response curves are then
studied in light of these theorems.

Section 4 begins the numerical investigation of the multiple forcing
functions problem vis-a-vis the asymptotic results. In this Section the
driving forces are side force and mass imbalance, the most intensely
studied special case. Explanations for results from the Final Report
of Control Dynamics Company [3] are provided. Section 5 then considers
more general numerical examples.

Section 6 deals with boundedness and stability. Two theorems along
with a novel mathematical representation of the Jeffcott equations are
presented. New boundedness results are also studied by comparing the
nonlinear solution's behavior with that of the corresponding linear
problem (8 = 0). Finally numerical results are included to illustrate
the conjecture that the nonlinear solution's boundedness is predicted
by that of the linear solution.

Section 7 contains the conclusion of this Report and opens a can
of worms by observing that heretofore the initial conditions have been
ignored as a vital factor in determining the analytic solution.



2. SUMMARY OF THE SINGLE FORCING FUNCTION PROBLEM AND EXTENSION TO
MULTIPLE FORCING FUNCTIONS

This section contains four subsections which include a summary of the
analytic approximations of the Jeffcott equations with a single forcing
function, as presented in [4], and new extensions to the Jeffcott equations
with multiple forcing functions. Subsection 2.1 presents the dimensional
Jeffcott equations and the transformations leading to the nondimensional
form and the complex form of these equations. Subsection 2.2 is concerned
with the generalization of the complex Jeffcott equation and with the
identification of the special cases of mass imbalance, side force, rubbing
and combinations of these three forces. Subsection 2.3 is a reproduction
from (4] of the arguments leading to the discovery of the nonlinear
natural frequency. Subsection 2.4 discusses the application of the
method of multiple scales to approximate analytically the solution of the
Jeffcott equations when they are forced by a single or by multiple forcing
functions. This subsection concludes with a typical example which
illuminates the analytic derivatioms.

2.1 NONDIMENSIONALIZATION

The nonlinear Jeffcott equations which describe the displacement of
the rotor center from its equilibrium position in the inertial, Cartesian
coordinate system (y, z) (each in meters) and which include bearing forces
which hold the rotor in position, are these:

¥+ (Cs/m)i + (1/m) [KS + Ky (1 -68/r)] v+ (Qs/m)z

Z + (Cs/m)é - (Qs/m)y + (1/m) [Ks + Ky (1 - &8/r)lz

uw? coswt (1)

uw?sinwt (2)

when r = Vy? + z°28; otherwise, Ky = 0. Here the shaft of the rotor lies

along the x-axis and

n = mass (kg.)

Cs = seal damping (kg./s.)

K, = seal stiffness (kg./s.?)

Q = cross-coupling stiffness of seal (kg./s.?)

u = displacement of the shaft center of mass from the geometric

center (m.)

bearing stiffness (kg./s.?)

o
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§ = clearance or deadband between housing and bearing (m.)
U = coefficient of friction between housing and bearing (none).
w =

angular velocity of the shaft (rad./s.)

Since U is nondimensional and typically small, one may regard it as zero
without affecting the qualitative results. Equations (1) and (2 ) can
be put in nondimensional form using a displacement g and a frequency o.
One pair of candidates for g and o would be g = §, the deadband size, and
0% = w? = Ks + KB’ the natural frequency of the corresponding linear

0
problem (8 = 0). Thus, using Y = y/g, Z = z/g, and T = ot, the dimension-
less equations are these:

Y" + CY' + [A + k(1 - A/R] Y + BZ = E¢%cosét (3)
Z" + CZ' - BY + [A + k(1 - A/R)] Z = E¢®sin¢t ()
where prime denotes differentiation with respect to T and C = Cs/m/c,
A= Ks/m/oz, k = KB/m/oz, B = Qs/m/oz, A =8/g, R=r1/g, E=u/g, and

¢ = w/o.
Equations (3 )

(4 ) can be reduced to the following single equation by
defining W =Y + iZ;

W'+ CW' + {A + k (1 - A/|W]) - iBW = E¢Zexp(i¢T). (5)

2.2 GENERALIZATIONS

A generalization of equation (5 ) is

L
W'+ CW' + AW + K(1 - A/|W])W =n§1 F (¢)) exp(ig 1) (6)

where C, A, and K are complex constants and where the nonlinear left-hand
side of equation (6 ) is being driven on the right-hand side by multiple
forces. The following are special cases of physical interest:

a. Forcing function is mass imbalance. This is the case derived in
equation (5 ) and is obtained from equation (6 ) with L = 1 and
Fi(¢1) = E¢3.

b. Forcing function is side force. This force may be introduced into
the Jeffcott equations (1) - (2 ) as a constant replacement for
the mass imbalance. In such cases, equation (5 ) becomes

W' + CW' + {A + k(1 - A/|W|)- iB} W = constant.
Thus, a side force is the special case of equation (6 ) with
L =1, Fi(¢,) = constant, and ¢, = 0.
Y



c. Forcing function is rubbing. Contact between a rotor and its
housing produces a Coulomb damping force. This force would
modify the original Jeffcott equations by the addition of the
terms:

K (1 - 8/r)y - K (1 -6/r) z+K (1 -6/1)C
and K (1 - &/r)y + K (1 - 8/r) z + K (1 - &/r)G

respectively, to the right-hand sides of equations (1) - (2).
Here, G = constant = stator offset in the y - direction, KSt =
stator stiffness and u = coefficient of friction, which may not
be small. As before these forces would be included only when
r=(y%+ zz)%=>6. On replacing y - G by y, equation (5 ) (and
correspondingly its equivalent forms) again occurs but with
these modifications:
1. i[-B] is replaced by i[-B + u(KSt/gz)(1 - A/R)]
2. the forcing function E¢® exp(i¢t) is replaced by
E¢%exp(i¢t) + (—w§ /g2)(a/8).
Thus, rubbing is equivalent to having two forcing functions in
equation (6) where L =2, F1(¢1) = E¢2, F(¢,) = constant, and
% = 0.
d. Any combination of mass imbalance, side force, and rubbing.
Initially, attention is restricted to equation (5 ); i.e., equation
(6) with L = 1. It will be seen later that in a first approximation, the
more complicated cases of L @ 1 can be solved as a superposition of the
individual responses which are found using equation (5).

2.3 NONLINEAR NATURAL FREQUENCY

Consider the dimensional, homogeneous (E = 0) equation corresponding
to equation (5 ):

W+ (C/mw o+ (1/m) {[Kg + Ky (1 - 6/7) - 1Q]]} w =0, (7)

where w = y + iz. If this equation were also linear (§ = 0), then

exponentially grbwing or decaying solutions would generally result for
a given set of system parameters. In the special case that (QS/CS)2 =
K, + KB’ a sinusoidal solution is obtained with frequency B¢ = QS/CS.

To see this, consider the characteristic equation for w = exp (pt):




2 _ i =
p° + Gsp + [Ks + X 1QS] 0

p= —Cs/2

1+

{c;/u - K, - K+ iQs}%
A 1 E
{C;/H - (QS/CS) + 1Qs}

1+

= -C_/2
s
= -Cs/2 + 1{1CS/2 - Qs/Cs}
= -C_ - 1Q/C_, 1Q/C,.
In the nonlinear, homogeneous problem, KB is replaced by KB(1 - 8/r); hence,

if r is a constant, then there is a wide spectrum of r for which (QS/CS)2
may be K, + Kj (1 - &8/r); i.e., if
K, < (QS/CS)2< =K, + K, (8)
then there is a constant value of r (with r > §) for which (QS/CS)2 =
Ks + KB (1 - 8/r). This value of r is denoted by a and the corresponding
frequency by Bo = QS/CS. This frequency is labeled the nonlinear natural
frequency. Thus, whenever inequality (8 ) is satisfied, equations (1) -
(2 ) with u = 0 have steady-state solutions y = a cos (Bet) and z = a sin (B,t).
Notice that By = QS/CS < = (Ks + KB)% = wy, the dimensional natural
frequency of the linear system. Thus, in considering the general

nonhomogeneous problem, it is necessary to be aware of these three
dimensional frequencies:

Bo - the nonlinear natural frequency,

wg - the natural frequency,

w - the driving frequency.
It will be shown in the next section that the nonlinear frequency R which
may appear in a stable solution of the non-homogeneous version of equation
(6 ) always lies between Bo and wy.

One final rearrangement of equation (5 ) is made here to emphasize
the nonlinear natural frequency:

W' + CW' + kW = ef(W) + E¢pZexp(idT) (9)
where k = A + k (1 - A/a) - iB and £(W) = kA[1/|W] - 1/alW/e.

2.4 METHOD OF MULTIPLE SCALES

This section deals with formal, singular asymptotic expansions of the
Jeffcott equations as written in equation (9 ). A straight-forward

6




asymptotic expansion is not general enough for this problem since it
always leads to a zero-order approximation of the form:

W =M exp(iBoeT) + N exp(i¢T)
for constant values of M and N. Typical singular asymptotic expansions
suggest that one should replace BT by B(T) and constant M by function M(T).
In considering a Taylor series expansion of B{T), one can ignore the
constant term (or alternatively, assume that it is grouped with the
coefficient M(t) ). Then the leading term of the Taylor series should be
BoT. This is what one obtains from the straight-forward expansion.

One method, the method of averaging, is appropriate for the Jeffcott
equations since it begins with the assumption that

W = M(1) exp(iB(1)) + N exp(i¢t).
Another method, multiple scales, is also appropriate because one can
envision the action of the rotor being based on two different time scales.
The results are identical for the two methods.

Instead of one time scale T, assume the problem depends on many
time scales:
To =1, Ty = €1, T, = €21, . . ,
Henceforth, only T, and T; are used. Let W(t) = W(T,, T,) =
Wo(To, T1) + €W1(To, T1) + . . . Equation (9 ) becomes a partial differen-
tial equation since
d/dt = (3/9T,)(dTq/dt) +(3/9T1)(AaT1/dt) = Do + €Dy
and (d2/dt%) = (D, + €D;)2.
Thus, one finds

(Do + €D1)%(Wo + €Wyt . . .) + C(Dg + €Dy) (Wo + €Wy + . . .)

+ K(Wo + €Wy + . . .) =ef(Wy + €Wy + . . .) + EdZexp(i¢T,). (10)
Equating like powers of € yields

€% Do>Wy + CDoWo + KWy = E¢2exp(i¢T,). (11)

This is a linear problem with this steady-state solution

Wo = M exp(iBoTo) + N exp(igT,)
where N = E¢2/(-¢* + iC¢ +x) and M = M(T;). To determine M one must
examine the e-order problem and choose M to eliminate secular terms;
see Nayfeh [7]:

el: Do2Wy + CWy + kW, = -2DD1Wo- CD1We + £(Wy).



"With V = kA e, the right-hand side of the last equation becomes
-2iBM'exp(iBoTo) - CM'exp(iB,Ty)
+ V(1/|Wo| - 1) [M exp(iBeTq) + N exp(i¢T,)]
where [Wo| = {|M|% + |N|? + MN exp[i(¢ - Bo) To] + MN expli(B, -¢)To]}%.
To aviod secular terms ome requires that the collective coefficient of
exp(iBo¢To) be zero. Although an anlytic solution of the differential
equation for M(T;) has not been found, one can qualitatively assess M
based on a similar problem (van der Pol's equation) and specific numerical
results (presented below).
Since M(T;) is complex, it may be written as
M(T,) = p(Ty) exp(iB(T;)]. Thus,
Wo = p(T1) exp[iBoTo + 1B(T1)] + N exp(i¢T,)
or, assuming é(Tl) is analytic near t = 0, Wy = o(T;) exp[i(Bo+ €Ry)T + . . .]
+ N exp(i¢T). Thus the fundamental frequency of the nonlinear problem is
not By but 8 = By + €By+ . . .; however, B must reduce to B, when E¢2 = 0
Consequently, the frequency Y = ¢ -8, that appears in the expression for |W, |
should be considered as vy = ¢ - 8. Then 1/|W0| shows all frequencies ny
and Wo/|Wo| shows all frequencies ny#g, for n = 0, 1, . . . This suggest
that M has a complex Fourier series of the form:

b 5. exp(inyT;). -
n=-co

Another factor of M must also be included since numerical examples
show that M=0 if E¢? is greater than some fixed value. This is similar
to the behavior of the van der Pol oscillator; see [7]. One possible
form of M would include a factor of the form F = 1/{1 + exp(-nT;)] where
n = n(E¢?). This would imply that F+1 as T+« when n20 and F+0 as T
when n < 0. Thus, M looks like:

1701 + exp(-nTy)] ¥ s, exp(inyTy).

n=-o

PSD plots of R show the frequencies ny.

L
For the case of multiple forcing functions, I Fi(¢i) exp(i¢it),
' i=1
one defines Yy < ¢i -~ B. Then the zeroth-order asymptotic approximation

of the solution of equation (6 ) will contain L terms to account for the




L forcing frequencies, ¢i, i=1,2, ..., L Thus, the term N exp(i¢Ty)
in Wy is replaced by Nyexp(idiTq) + . . . + NLexp(i¢LTo). The coefficient

M of the nonlinear frequency R will now contain the Fourier factor

z Svexp(inl)
where vy =1n3Yy: + . . . + DYy, and the summation is taken over the integer
v from -= to += with v=mn; + . . . ny . Typical examples show significant
magnitude coefficients, SV, only for v =0, +1, -1, +2, -2.

Figures 1 and 2 show typical numerical solutions which are obtained

using Runge-Kutta fourth order on equations (1) and (2 ). The system

constants used are these: uy = 0, m= 1 1b. - s.%/in., CS = 240 1b. - s./in.,

K =0., KB = 1,305,000 1b./in., Qs = 200,000 1b./in., § .0000285 in., and

S

w = 500 Hertz = 1000w rad./s. Thus, B = 833.33 rad./s. and a = .000060915
in. The system is made nondimensional using a for the g-displacement and
Be. for the o-frequency. With these choices, the constants of this equation

W'+ CW!' + [k(1 - A/|W]|) - iBIW = E¢%exp(i¢t)
have these values: C = .288, k = 1.8792, A = .467865, B = .288, and
¢ =6 /5.

Figures 1 and 2 show changes in the solution Y vs. Z as E assumes the
values 100n/(1000w)?> a forn =0, 1, . . ., 7. The graphs are plotted for
.2< t <.5s. The initial circle (for E = 0) opens into an annular region,
which becomes larger and thicker as E increases until a (transition) value
of E occurs and the coefficient of exp(ift) becomes zero. Thus,

W = N exp(i¢t), a circle of radius |[N|. As E increases beyond this transi-
tion value, the solution remains a circle (Figure 2.d) with radius
|N| = |E¢2/(-92 + 1Co + k(1 - A/|N]|) - iB)].

Figure 3, a typical full PSD plot, is the case E = 4/10,000n%a. As
shown earler, one expects frequencies of w and 8 to appear, as well as
harmonics of ny*R where y =w -Bandn =1, 2, . . Thus, with 8 = 150
Hertz, and w = 500 Hertz, one predicts that the PSD plot will exhibit peaks

at 150, 200, 500, 550, 850, 900, . . . Hertz. Figure 3 confirms these
predictions.



3. CIRCLE OR ANNULUS

This section presents two theorems which provide analytic expressions
that allow one to determine a priori whether a solution's geometry will be
a circle or an annulus. Numerical examples are also included.

In this section we consider the Jeffcott equations without side force,
viz.

y" + ¢cy' + qy + Bz

z" + cz' - By + qz

Fcosot

FsingT,
where F = E¢p2, r = (y* + z2) %, $>0,E >0, q=A+%(1-A71?Y if
r2 A, and q = A if r < A. In polar form, and assuming that r 2 A, we
can write these equations as

W'+ ocu' + {A - 1B + k - kA/|w|}w = Ep%exp (id1) » : (12)
- _ a2
Let M = ————Q—AB"'_kq)c 6%, and F + M2E? +9“E? - K2A2.

We have:

Theorem 1. Assume ¢c - B # 0. Then the differential equation (12) has a

solution of the form w = r exp(ift + idg), T 24, ¢o 20, if and only if
the following conditions are satisfied:

F 20 (13)
and either
kAM +¢2(F)’}s E(M% + ¢") (14)
and (e 492 (Mo L
(M + ¢*)(B - ¢c) (15)
or M -02(M)F] < B0 + ¢%) (16)

+
and (e -2(F)%)o® 5 4 (17)

(M2 +$*)(B - ¢c)

2(m\F
If (13), (14) and (15) are satisfied, then, setting v = Eéﬁ;ﬂk_ﬂil_’
E(M? + ¢*)
we have ¢ = arc sin v (18) and r = E¢2v/(B - éc) (19).
If (13), (16) and (17) are satisfied, then (18) and (19) hold with

- kAM - <1>2(F)J‘r

v =
E(M? + ¢%)

10



Proof: Assume (12) has a solution of the form w = r exp(i¢t + i¢,) with

r=A. Since w' = i¢w and w" = - ¢?w, replacing in (12) we obtain

-¢%r + i¢rc + {A - iB + k - kAr '} r = E¢2exp(ido) Setting u = cosodg,

v = sin¢,, and separating real and imaginary parts, we obtain
(¢c - B)r = -E¢3v

and
-¢%r + (A + X)r — kA = E¢u, i.e.
(A +X% - ¢3)r - kA = Ed%u

Case 1:
pc - B #0

From (20) we know that r = E¢?v__ ;

B - ¢c
whence from (21)

2
A+ k- ¢° Eb2v - kA = E¢2/1-v2.
B - ¢c

Setting )
M =g_+__k;¢;¢z,

- ¢C
we have
MEv - kA = E¢2/1 - v2.
Squaring:
M?E*v? + k*A? - 2kAMEv = E%¢* - E2¢"v2,

i.e.

(M* + ¢*) E2v2 - 2kAMEv + (k2A? - E2¢*) = 0.
Setting

D = KZAZMZ - (Mz + ¢u)(k2A2 _ E2¢h)
and

F = M?E? + ¢"E2 - k2A?

we readily see that
D = ¢"F,

2
By = KM £ o8F

M2 + o
v = gl XA+ %V
MZ + ¢'+

or

<
i

E 1 (kAM - ¢2/F)/(M? + %)
11

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)



and therefore

F 20. (30)
Since |v|< 1, it is also clear that
either

kM + ¢2/F £ E(M? + ¢*) (31)
or

kM - ¢2/F| < E(M2 + ¢*). (32)
Moreover, from (22) we know that

3
21 2, . (33)

where v is given by (28) or (29).
Conversely, let M and F be defined by (23) and (27) respectively, and
assume that (30), (33) and either (31) or (32) are satisfied. We claim
that there is a solution of (12) of the form w = r exp(i¢T + i¢e) with r > A.
To show this, assume for instance that (31) is satisfied, and let v be
defined by (28).
Then .

lvis1, (34)
and v satisfies (26). Rearranging terms we obtain (25), whence taking
the square root on both sides (24) follows. Let r be given by (22). Then
clearly (20) is satisfied. Moreover, in view of (23) there is a ¢o = 0
such that sin¢q = v and cospy = »/1Tv-E Setting u= V1 - v2, we see that (21)
is satisfied. Moreover, from (33) we know that r > A.
Setting

w= rexp[i¢t + ido] the conclusion readily follows. Q. E. D.
Theorem 2. Assume ¢c - B = 0. Then the differential equation (12) has a
solution of the form w= rexp(i¢T + i¢y), r 2 4, ¢ = 0, if and only if

the following conditions are satisfied:

A+k-¢2=0 (35)
or
A+k-0¢2#0 (36)
and either
E¢> + kA 5, 37)
A+k- ¢
12




or
-E$2 + kA

2 A, (38)
A+ k- ¢

Moreover:
(a) If (35) is satisfied then r 2 A is arbitrary, ¢, = (2n + 1)m,
n=0,1,2, ..., and kA = E¢?

2
(b) If (36) and (37) are satisfied then r = M—z
A+ k-

and ¢ = nm, n =20, 1, 2, .

2
(¢) If (36) and (38) are satisfied then r = “E¢° + kA
: A+ k- 92

and ¢g =nm, n =0, 1, 2,

Proof':

Since ¢c - B = 0, (20) implies that v = 0, and therefore u = *1.

If (35) is satisfied, we conclude from (21) that kA = E¢? and u = -1.

Thus ¢ = (2n + 1)7, n =0, 1, 2, . . . and r is arbitrary. Conversely,
assume that (35) is satisfied,
= rexp(i¢t + (2n + 1)mwi), (39)

and kA = E¢>. Then we readily conclude that (20) and (21) are satisfied,
and therefore that (39) is a solution of (12).
Assume now that (36) is satisfied.. Then (21) yields

2
rzu ().].O)
A+ k- ¢°
provided that (37) holds, or
_Th2
p =B+ KB 1)
A+ k- ¢?

provided that (38) holds. Moreover, it is clear that ¢, = nm,

n=0,1, 2,

Conversely, assume that (36) is satisfied, and let r be given by (40) (if

(37) holds), or by (41) (if (38) holds), and let ¢ =nm, n =0, 1, 2, .

We then readily see that (20) and (21) are satisfied, and therefore that

w=r exp(i¢t + inw) (n =0, 1, 2, . . .) is a solution of (12). Q. E. D.
Numerical examples are now presented to illustrate the results of

these theorems. Consider these given parameters:

13




m =1
K =0

S
Ky = 1,305,000
Q, = 200,000
Cs = 240
u = .0000285
§ = .00000285

and use the nondimensionalizing frequency ¢ = VQE;_I_E;3 and the nondimension-
alizing displacement g = u. Table 1 summarizes a frequency-response curve

as ¢, the nondimensional forcing frequency, varies from 0.0 to 2.0 in
increments of 0.1. The corresponding values of R are obtained from the
Runge-Kutta solutions. From Table 1 one sees that the solution is a circle
for all values of ¢ except ¢ = 0.1. Generally speaking, one expects the
solution to be an annulus over an interval of ¢, not just at one point.

The theorems, however, can find this interval in much less (computer)

time and show that the solution is an annulus for 0 < ¢ <0.11.

Table 2 uses the same parameters as Table 1 except that § = .0000285;
i.e., § = u instead of & = .1u (in Table 1). In this case an annulus
appears for ¢ = .1, .2, .3 and for ¢ = 1.0 to 2.0. Figures 4, 5, and 6
are the Runge-Kutta solutions for ¢ = .3, .9, and 1.5, respectively.

From the theorems one has that the solution is an annulus for O0<¢ € .31
and for 1.0 £ ¢ £ 2.0.

Table 3 changes only the § in Tables 1 and 2 to § = 10u. The theorem
delimits the ¢-intervals for an amulus to be 0 £ ¢ <.61 and .84 < ¢ £ 2.0.
These examples lead one to abandon repeatedly plotting Runge-Kutta
solutions in order to determine intervals of annuli. Rather, one employs

the inequalities of the theorems to determine these intervals thereby
allowing one's focus to shift to variations in the ratio &/u.

Table 4 summarizes seven such ratios for the same data of Tables
1, 2, and 3. The three cases, §/u= 0.1, 1.0, and 10.0 of the preceeding
Tables, are included here along with four other values, §/u = 0.5, 0.9,

2.0, and 5.0, to give a smoother picture of how the frequency-response
curves depend on this ratio. One should bear in mind that each description

1y




(listed as "circle/annulus regiomns") for a fixed §/u ratio is itself a
frequency-response curve. The most interesting feature seen by comparing
these seven curves is that there is only one transition point, from annulus
to circle, in the curves for §/u < 1.0 (excluding the initial circle at

¢ = 0). But for 6/u2 1.0 there is a transition point from annulus to
circle and another transition point from circle back to anhulus.

Figure 7 is the frequency response curve of Table 4 with § = u.

The regions where the response is an annulus are shown in the figure with
the outer radius of the annulus only. ,

Tables 5 and 6 are the same as Table 4 except that the bearing
stiffness, KB, is changed. Table 5 uses KB = 700,000, a value that is
close to an unstable solution. Table 6 uses KB = 10,000,000, a very stiff
bearing. These tables are included to illustrate that the frequency-
response curves of Table 4 are not atypical.
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4, ROTORS WITH MASS IMBALANCE AND SIDE FORCE

Thus far, the analysis has concentrated on the Jeffcott equations
containing only one forcing function, which is mass imbalance in the ’
numerical examples, but can be any sinusoidal force, F exp(iwt).

We begin our initial investigation into multiple forcing functions
by examining the most improtant case in applications, viz., mass imbalance
plus side force. The side force appears in the Jeffcott equations as a
constant in the y-direction only. In general, one has the following
nondimensional, complex form of the Jeffcott equations with side force
and mass imbalance: »

W'+ OW' + (A + k(1 - A/R) - iB) W = 8 + E¢2exp(i¢t)
where W = Y + iZ. If the dimensional side force is, Sf, then the nondimen-
sional side force is S = Sf/mass/c?/g.

In the corresponding linear problem (A = 0), one finds the solution
to be the sum of two parts: (i.) a constant, resulting from the side
force S and (ii.) a sinusoidal, resulting from the mass imbalance. Said

another way, the solution of the linear problem is a sinusoidal shifted by

a constant (the side force contribution).

In an analogous manner, one predicts the addition of side force to
the nonlinear problem will cause a constant shift in the solution of the
nonlinear problem without side force. There are, however, slight modifi-
cations that must be made since one is dealing with a nonlinear problem
and the principle of superposition no longer holds exactly. For example,
a circle or circular annulus will be changed into an ellipse or an
elliptical annulus, but otherwise no fundamentally different curves should
appear.

Upon examining the numerous results of the Control Dynamics Company
Report [3], one sees that this is the case; i.e., regardless of whether
one has A-motion, B-motion, or C-motion, the trajectory of the solution
of the Jeffcott equations is a shifted ellipse or a shifted elliptical
annulus.

Detailed results of the CDC Report [7] are now considered.

CDC-Figure 2.3a: A-motion within deadband. In this case (within
deadband), the Jeffcott equations are linear and the trajectory is a circle
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that has been shifted from the origin by a fixed amount in the y and z
directions. This is exactly as expected. Note that the solution shifts
in both the y and z directions even though the Jeffcott equations contain
a side force in the y direction only. This is caused by the coupling of
the two equations. Figures 8 and 9 reproduce these results.

CDC-Figure 2.4%a: A-motion overlapping deadband. Now the shifted
circle becomes a shifted ellipse since the motion includes the nonlinear
region outside the deadband. Still this is what is expected. Figures 10
and 11 reproduce these results.

CDC-Figure 2.5a: A-motion outside deadband. Again a shifted ellipse.

CDC-Figure 2.6a5 A-motion outside deadband. Again a shifted ellipse.

CDC-Figure 2.7a: A-motion overlapping deadband. Again a shifted
ellipse. Figures 12 and 13 reproduce these results.

CDC-Figure 2.8a: A-motion overlapping deadband. Again a shifted
ellipse.

CDC-Figure 2.9a: B-motion overlapping deadband. A shifted elliptical
annulus. The earlier investigators apparently labeled the annular regions
observed from numerical results as B-motion. It is now understood that
this "erratic" motion is actually an annulus and is caused by including
contributions from the left-hand side of the Jeffcott equations (the
homogeneous solution). If the side force (causing a shift of the center)
were omitted, a circular, annular orbit would result. In the corresponding
PSD plot of CDC-Figure 2.9b, one sees the subsyncronous frequency appear at
half the driving frequency. This is no surprise since the damping and
cross-coupling ratio was chosen to be exactly one half the driving
frequency. Figures 14 and 15 reproduce these results.

CDC-Figure 2.10a: B-motion surrounding the origin and overlapping
deadband. Again a shifted elliptical annulus. The "radius" of the
resulting elliptical annulus appears to be a direct result of the mass
imbalance, whereas the center of the elliptical annulus is caused by the
side force. Therefore, in this case the center is close to the origin in
comparison with the "radius" of the elliptical annulus. This suggests that
the mass imbalance is much larger than the side force for this case. Indeed,
according to the key, this is the case of the largest mass imbalance and

the second smallest side force considered.
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CDC-Figure 2.11a: B-motion surrounding deadband. Again an elliptical
annulus.

CDC-Figure 2.12a: C-motion surrounding deadband. The original investi-
gators defined C-motion to be a shifted elliptic annulus motion that completely
surrounds the deadband. By our analysis there is no need to distinguish
between B-motion and C-motion. The two are resulting from the same analytic
case: motion caused by side force, mass imbalance and a contribution from
the homogeneous equation. It is A-motion, where there is no contribution
from the homogeneous equation that is different. A-motion is a shifted
ellipse, whereas B-motion and C-motion are shifted elliptical annuli. This
is further verified by examining the PSDs of the B-motions and C-motioms.

In B- or C-motion one sees a peak‘occuring at the subsynchronous frequency
which is exactly half the driving frequency.

CDC-Figure 2.13a: C-motion surrounding deadband. Again a shifted
elliptical annulus. Here the thickness of the annulus is so small that
it is hard to see in the graph. But one can see that it is actﬁally there
by examining the corresponding PSD. Also from the PSD one sees that the
major contribution is at the subsynchronous frequency rather than the
driving frequency. This is because of the comparative sizes of the three
parameters.

CDC-Figure 2.14%a: C-motion touching deadband. Again a shifted
elliptical annulus. It is really B-motion. The thickness of the annulus

in minute compared with its "radius". Figures 16 and 17 reproduce these
results.
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5. MULTIPLE EXCITATIONS

In this section the generalized, complex Jeffcott equation (6) is
considered. The examples deal with the case L = 2 in equation (6); i.e.,
the nonlinear Jeffcott equation is being forced by two functions,

F1 exp(i¢,7) and F, exp(i¢,T).

Define v1 = ¢; - B and Y, = ¢, - B where ¢, and ¢, are the two forcing
frequencies and B, as in the case of the single forcing function, is the
nonlinear frequency resulting from the homogeneous portion of the Jeffcott
equation; i.e., B =By + €By + . .

Certainly one expects to see the frequencies ¢; and ¢, in the response's
PSD. But also one sees all frequencies |y #B| where y = n,y; + n,vy,
and ny + nz = v with integer v ranging from -« to +«. Thus, for v = 0,
ni; + nz = 0 and as ordered pairs (n;, n,) = (0, 0), (1, -1), (-1, 1),

(2, -2), (-2, 2), . . . . Hence, v = 0 corresponds to y = 0, |61 - 2],
2|61 - 921, 3|62 - 921, . . . . For v=1, (n;, n,) = (0, 1), (1, 0),
(-1, 2), (2, -1, (=2, 3), (3, -2), . . . and correspondingly y = ¢,-8,
¢1 -B, 2¢2 - 91 -B, 3¢2 - 2¢1 - B, 341 - 2¢2 =B, . . . . As in the

single forcing function case, many of these frequencies may not appear
in the solution's PSD, depending upon the relative magnitudes of the
coefficients of the homogeneous equation and the forcing magnitudes F,
and F,.

Considered now are three examples which use the same homogeneous
coefficients as the example in Subsection 2.4%; i.e., m = 1, G, = 240,
KS =0, KB = 1,305,000, QS = 200,000 and § = 0.0000285. Again R, = 833.3
and B = Bo+ €Bf1 + . . :

The first example uses F, =50, ¢, = 300 Hz., F, = 350 and ¢, = 500 Hz.
The response is shown in Figure 18 and the corresponding PSD of y appears
in Figure 19. The three largest peaks occur at 155 Hz., 300 Hz., and 500 Hz.
Certainly, the last two are no surprise. Likewise, the 155 Hz. peak is
again corresponding to the B, the homogeneous solution. Secondary peaks
at 60 Hz. and 220 Hz. can be accounted for with

3v1 - 8v2 + B = 3(340) - 8(140) + 160 = 60

Y1 - 2Y2 + B = 340 - 2(140) = 220.
Minor peaks at 20 Hz., 340 Hz., 360 Hz. and 420 Hz. can also be included since
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0(y1) - v2 + 8 = =140 + 160 = 20

3(v1) - 6(y2) + B = 3(340) - 6(140) + 160 = 340

Y1 = Y2 + B =340 - 140 + 160 = 360

2y1 - 3v2 + B = 2(34%0) - 3(140) + 160 = k20.

The second example replaces F; and F, of the previous exercise with
F, =200 = F,. Again ¢1 = 300 Hz. and ¢, = 500 Hz. Figures 20 and 21
display the solution and its PSD, respectively. The PSD exhibits only
the peak, at 100 Hz., other than the mandatory peaks at 300 Hz. and 500 Hz.
But this can be accounted for as 2(300) - 500, or with B = 150 Hz., one has

-Y1 + 2y2 + B = =350 + 2(150) + 150 = 100.

Finally, the replacement of F; with 350 and F, with 50 leads to the
solution which is drawn in Figure 22 and to its associated PSD in Figure

23. The explanation of this example is analagous to the previous example.
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6. STABILITY

This Section contains two theorems, one related to the critical points
of a first order system of dimension six and the other related to bounds of
the solution of the same system. The Section concludes with examples of
bounded and unbounded solutions, which occur in corresponding regions of
the linear problem.

In this section we consider the Jeffcott equations with side force, viz.
y" + Cy!' + qy + Bz = Fcos¢Tt + D

(42)
z" + Cz' - By + qz = Fsingr,
where F = E¢2, r = (y? + zz)’k and g = A + k(1 - Ar 1)
ifr24, and q=4A if r <A, We start with
Theorem 1. Let u; =y, u, =y', u; =y", u, = 2, usg = z!', ug = z",
M= [F? - (u; + Cup+ qu, + Bu, - D)z]%, and
N = [F?2 - (ug + Cus- Bu; + qu,)?]*.
Then every solution of (42) is a solution of the autonomous system
uy = u;
ul = uj
u} = -q'u,;- quz - Cus - Bus - M (43)
u! = Us ‘
ul = : Ug
ul = Bu, -q'u, - qus -~ Cug + N¢
Moreover, no solution of (42) passes through a critical point of (43).
Proof From the first of the equations (42) we have
cosdt = (y" + Cy' + qv + Bz - D)/F. Thus
¢T = Arcos{(y" + Cy' + qy + Bz - D)/F]. Differentiating we see that
¢ =-[F -(y" +Cy' + qy + Bz)zl-% [y + cy" + qy' + Bz' + a'yl,
or
¢ =-M"' (ul +Cu, +qu, + q'u_ +Bu.), whence
u! = -q'u, - qu, - Cu, - Bu; - M}, (14)

Similarly, from the second of the equations of (42) we see that

singt = (z" + Cz' - By + qz)/F, or

¢T = Arcsin[(z" + Cz' - By + qz)/F], whence we readily conclude that

u! = Bu, - q'y, - qu; - Cu, + N¢, ‘ (45)
Combining (44), (45), and the definition of the variables u, (43) readily
follows. We now turn our attention to the critical points. By definitionm,

W = us = Us = Us= 0, and therefore -q'u; - Mp = 0, and -q'us + No = 0. (46)

Assume the pair (u1, us) is a solution of (42) (i.e. u1 =y, uy, = z).
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In view of the definitions of M and N, we readily conclude that
M = Flcos¢t| and N = F|sin¢t|. Assume r < A; then q' = 0, and from (46)
we infer that M = N = 0. Since M? + N2 = F2 # 0, we have a contradiction.
Assume now that r 2 A. Then q' = kAR"?R'. Since r = (y? + zz)%,
r' = (y? + zz)'%(yy' + zz'). Since y' =u, =0, and z' = us = 0,
we conclude that r' = Q, and therefore q' = 0, and we have a contradiction,
as in the first case. Q. E. D.

p=04if |W| <A and o
are equivalent to
W" + CW' + (A - iB)W + koW(1

where W = y + iz. We have:

1 if |W| 2 A. Then the Jeffcott equations

A/ W|) = Fexp(i¢t) + D, (47)

Theorem 2. Let exp(At) be a solution of

v" + Cv!' + (AiB + k)v =0, let A = a + ib,

and assume that

W] > A if tg < £t <ty €.

Then there exist constants M;, M., M3 such that if

to <t <t1, |W|< M; + M, exp(at) + M3 exp[-(a + c)t].

In particular if -c £ a £ 0, W will be bounded thereon.

Proof of Theorem 2: Let G = A - iB + kp. Then (47) can be written as

W" + CW' + GW - pkW/|W| = Fexp(i¢t) + D. (48)
Let W = uv, where v" + cv'! + Gv = 0. Then (48) is transformed into

u'v + 2u'v' + uv" + cu'v + cuv! + Guv - pkW/|W| = Fexp(i¢t) + D, i.e.

u'v + (2v' + cv)u' - okW/|W| = F exp(i¢t) + D. (49)

Assume v = exp(At) and A = a + ib; then (49) becomes
u" + (21 + ¢) u' - pk(u/|u]) exp (-X + ib)t
=TF exp (i¢ -A)t + D exp(-At)
Multiplying by exp (2X + c¢)t we have
[u' exp(2x +c)t]t - pk(u/|u|) exp (A + ¢ + ib)t
=F exp (1¢ +2 + ¢)t + D exp (A + c)t.
Assume |W|2A if t 2 t,. Integrating, we have
u' exp (2A + ¢)t =

kfzo(u/lu\) exp (A + ¢ + ib)sds + [F/(i¢ + X +c)]llexp (i +A + c)t -

exp (i + A + ¢)to) + [D/(A + ¢)1lexp (A + c)t - exp (A + c)to] +
u'(to) exp (2 + ¢) to.
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Multiplying by exp [-(2X + c)t] we obtain:
u' =k exp [-(2X + c)t]ft (u/|u]) exp (A + ¢ + ib)sds + [F/(ip + A + c)]
0

exp (i¢ - M)t + [D/(X + ¢)] exp (-At) + E exp [-(2X + c)t].
Thus,

|lu'] < k exp [-2a + c)t]fzoexp (a+c)sds + |[F/(id + A + ¢)| exp (-at) +

ID/(X + ¢)| exp (-at) + |E| exp [-(2a + ¢)t] <

K1 exp(-at) + K2 exp [-(2a + ¢)t].

Integrating, we conclude that

lul € k; exp (-at) + K, exp [-(2a + ¢)t] + ks. Thus,

W] = luexp (A)] < K3 + Ky [-(a + c)t] + Ks exp (at),
whence the conclusion follows. Q. E. D.

Remark: From Theorem 2 we deduce that if -¢ < a £0, then no solution
of the Jeffcott equations can diverge to infinity. This does not preclude,
however, the possibility of unbounded oscillatory behavior, |W| could
behave like, for example, |sint| exp (t), as t goes to infinity. The

reason for this is that, if |W| < A for some interval (ti1, t.) (with t; > t,),

and |W| 2 A for t 21t,, then for t > t, the constants M;, M,, and M; will
depend on W(t,) and W' (t,).

As shown. in Subsection 2.3 the eigenvalues of the linear Jeffcott
equations (8 = 0) corresponding to equations (1) and (2) are these:

- _ z F 10 .

A=-C/2 % /(c /2) (K, +Kp) + 1Q

Hence, the solutions are bounded if and only if Re()) < 0; i.e.,
C— -

Re[/'(Cs/Q) (KS + KB) + 1QS]< CS/2.
A similar result is obtained by considering the linear portion of the six
first-order equations of system (43).

Table 7 is a listing of values where A = 0 for CS = 150 and Cs = 240,
These values are shown graphically in Figure 24 together with Cs = 100 and
CS = 300. In all four cases the linear solution is bounded if the
corresponding choices for KS + KB and Qs lie above the curve in question
and unbounded below the curve.

This Section concludes with four examples of the nonlinear Jeffcott
equation. Figure 25 is the solution of equations (1) and (2) with Cs = 240,
Qs 200,000, KS =0, KB = 650,000, w = 500 Hz., § = .0000285, and
u 400/w?. From Figure 24 this solution is unbounded which agrees with
Figure 25.

23




The second example is the éame as the previous example except that
Ky = 750,000. The corresponding linear solution (8 = 0) from Figure 24
is bounded. Figure 26 draws this solution.

The last two examples change only C 4 50 150 and K; to 3,500,000 and
4,500,000 respectively. From Figure 24 the smaller Ky value will produce
an unbounded linear solution while the latter KB value will produce a

bounded linear solution. Figures 27 and 28 verify these results for the
nonlinear problems.
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7. CONCLUSIONS

This report has developed new theory and examples for the nonlinear
Jeffcott equations in an attempt to offer mathematical explanations to
observed phenomena. The emphasis here has been on constructing an under-
standing of vibrations induced in rotors by nonlinearities in the governing
differential equationms.

To this end, a review of the analysis of a single forcing function
driving the Jeffcott equations lead directly to an examination of multiple
forcing functions, in particular those which are caused by mass imbalance,
side force, and rubbing. The theory presented herein is a geﬁeralization
of all three of theée specific forces and works well for any number of
forcing functions.

As was shown in Final Report (4], a nonlinear frequency induced by
the homogeneous portion of the Jeffcott equations appears in the PSD of
the solution and is a basis for harmonics, formed by the difference between
it and the forcing frequency, also to arise. In the case of two or more
forcing functions, this nonlinear frequency again surfaces, along with a
multitude of harmonics which are composed of sums and differences of the
nonlinear frequency and each of the forcing frequencies. Examples in this
report illustrate this analytic result for the specific case of mass
imbalance and side force as well as the general case of any two forcing
frequencies.

It was also shown in [4] that the nonlinear frequency is an elusive
quantity in the sense that for some particular‘problems it is part of the
PSD of the solution while in other problems it is absent. Therefore, one
of the primary goals of this work has been to try to determine a priori
for a given set of constants if the nonlinear frequency would actually be
a part of the solution's PSD. Section 3 of this report presented a set
of inequalities, based solely on the coefficients of the Jeffcott equations,
which can make this decision.

The stability problem has continued to resistant amalytic expression.
Even though the Jeffcott equations were successfully transformed into a
set of autonomous, first-order differential equation for which volumes of

stability theory exist, it was also shown that the critical points of this
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system, which are the basis of any stability analysis, do not lie within
a region of the y-z plane which is physically interesting. Therefore, it
was necessary to deal only with boundedness results of the solution. Some
new results for bounded solutions were displayed, and these lead one to
consider trying to prove the conjecture analytically that the effect of
deadband on stability is that of stabilizing. This is seen immediately

in the Jeffcott equations themselves where the only nonlinearity occurs

in the form 1 - &/r so that if a solution attempts to grow without bound
(r becomes infinite), then the nonlinearity approaches one and the problem
becomes linear. This is again a boundedness result, but it does hint at
stabilization.

One of the most interesting features of this fascinating problem has
to date not been considered. That is this: how is the solution affected
by variations in the initial conditions? Throughout the examples in this
Report and in the previous Final Report [4], the initial conditions were
never changed. It was only in making comparisons of the theory presented
herein with the results of the Control Dynamics Company [3] that differences
in solutions was observed for different initial conditions. While it is
well-known in elementary theory of differential equations, that a change in
the initial conditions of a nonlinear differential equation can have pro-
found effects on the equation's solution, the Jeffcott equations behave so
much like linear equations in a global sense that this idea of varying the
initial conditions had never occurred. It is believed that this behavior
affects whether the nonlinear frequency appears in a particular solution,
but not that a nonlinear frequency exists. Thus, the fundamental results

of this Report are not invalid, but rather another aspect of the problem
should be examined.
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caefficient values!

fibsolute F
il o=

e ) 1305000 s o= 240 Qg = 200000
wecentricity = 0000285 desdband = ,00000285 omnega =

Nundimensionglizing rarsmeters

freauesncy = sart(kKs +
disrlascement =

Kby =
gecentricity

&

*

omegs—-nausnt =
=, 0000285

#=art (130500

Mondimensionelized coefficient values?

C = Ca/omeda-naudght = NI
ko= Kb/ saeusrelomedga-raudght)
B = Qs/sausre(omedz-nausht)

omedga/omeses-nasugnt = NI
degdbend/eccentricity =

0.0 0.21
001 0020"0023
0.2 0.14
0.3 0.21
Oed 0.31
0.5 0.47
0.4 0.72
0.7 1.14
0.8 2+09
0.9 4.70
1.0 {FEAKY 17.48
1.1 4.97
1.2 2.97
1.3 2.27
1.4 1.92
1.3 1.71
1.4 1.57
1.7 1.47
1.8 1,39
1.9 1.34
2.0 1,29

demeing

2940/5art{13035000)
= NIl stiffrness = 1

= NI X=stiffriess = 200000/
forcing freauence = varied
NI deadbeand = Q.1

shaere

{A=anmulusy C=gircle’

C snnulus for
2} petween 2.0
- C

C

C

C circle Tor &
(] greater than
C

C

C .

C

c

C

C

c

C

C

C

C

c .

C

56

1303300

i

srndgd 0,11

tri
0,12



Teole 2

fusolute coefficient values!
Ke = § Ko = 1303000 Cs = 240 Qs = 200000
eecentricity = ,000028S% = deadband omesge = varied

Mondimensionslizing rarameter?
freauencs = sartiKs + Ki) = omedgz-nesusht = sert(1305000)
disrlecement = eccentricity = ,000028%

Mondimensionglized coefficient values!

L = Cesomegs-naudgnt = NI damring = 240/8art{(1305000)
k= Ko/sauesre{omege-naudnt) = NIO stiffrness = 1
E = Qe eswusrelomgga-naudnt) = NI X-stiffrhness = 200000/1305000
#ni = omesga/omeds-nsusht = NI forcing freeuerncy = varied
delts = deasdobsnd/eccentricity = NI dezdbsnd = 1
#irl R share

fi=snnulusy C=circle)d

0.0 2+14 C

0.1 2+.12-2.159 f annulas Tor ehi
0.2 2,07-2.,2¢0 f pelweer 0.00 snd ©.31
0.3 1.97-2.390 sl

0.4 1.35 C

0.5 1,69 C

0.6 2.12 C circle Tor #hi
0.7 2.92 C tetween 0,32 and 0,99
0.8 4,59 C

0.9 .17 C

0.97 {(FEAK? 18,32 c

100 0087"2004 A

101 0077"4056 A

1,2 1.01-3.94 a annulus for rhi
1.3 1,12-3,93 A dgreater than 1.0
1.4 1.14-3.97 A

165 1»25"3.76 ﬁ

1.6 1,43-3.84 A

1#7 1424"3060 ﬁ

1.8 1.,15-3.28 2}

1.9 1.24-3,26 A

20 1:,34-3,30 A

>7




Tsole 3 -

Apselute coefficient values:
Ke = 0§ Ko = 1303000 Ces = 240 s = 200
vecentricity = Q0000283 deasdband = ,00028% smega < varied

=

Mondimensionalizing warameters?
Trequence = sart{Ks + Kb) = omeda-naushl = sart(i1305000)
digsrlacemtn = eccentricity = 0000285

Nondimensionalized coefficient values!
C = Cs/omedga-naugnt = NI damring = 240/sart(1305000)

ko= Ks/seuare(omedga-nausght) = NI stiffrness = 1
B = Qg/scuzre{omedga-naudht) = NI X-stiffress = 200000/1305000
itk = omede/omeda-naught = NI forcing Freauencw = vapied

delvs = deadbsnd/eccentricite = NU deadband = 10

Feid R share
{A=znnulusy C=circle)

0.0 21.37 (I
0.1 21.4346-21.39 i annulus for end
0.2 21.31-21.44 A between 0.0 and 0.61
0,3 21.21-21.54 fA
0.4 21.03-21.72 f
D.3 20.,69-22.07 A
00\5 19-63""22‘94 l:l
0.7 20,954 C circle for rmhi
0.8 29,11 c betweern 0.62 and 0.83
0.83 (PEAK) 32,40 C
0.9 192.153-23.84° A
1.0 19.69-23.15 A annulus for ehi
1.1 12.,96-22.85 A greater than 0.84
1.2 20,13-22.468 A
1.3 20.23-22.398 A
104 - A
105 - A
106 - ﬁ
147 20.,45-22, 469 )
1.8 - A
109 - A
2.0 20,65~-22.24 A
58




Table 4

fbsolute coefficient volues:
Ke = § Ko=1305000 Ce=240 Qs=200000
gccentricite = 0000283 deadbrand = varied omedge = oyvaried,

Mondimensionzlizing sarameters!
freauency = sarb(Rs + Kby = omega-naught = sart (1305000
disrlacement = eccentricity = ,0000285
Hondimensioneslized coefficient values!
= Ls/omedges-nasudgnt = NI dameindg = 240/sart (1305000
Kop/seuare{omega-naudgnt) = NI stiffrness = 1
Qg/sauerelomeda-nauzdnty = NI X-stiffness = 200000/1305000
i = omeda/omedz-naugint = NI forcing freauency = varisd

it

T mE O
§

delts = deadbend/eccentricity = NI desdbsnd = varied

deadband/eccentricity circlesennulus regions
041 #ni = §,00 1 circle
O0¢G1 <= ehi <= 0,11 ! asnnulus

0,11 <= #ni 4,00 § virocle

0.5 #hii = 0,00 ¢ civele
0,01 <= phi <= 0,23 ! annulusz

0:+24 <= ghi 4,00 ¢ circle

0.7 =i w000 1 cirels
0,01 <= gni < 29 3 annulus

0.30 =i 4,00 t+ circle

1.0 #hi = 0,00 ! circle
wmopnl o d= 0,31 3 annulus

#hi <= 0,99 { circle
#hi <= 4,00 ! annulus

2.0 #hi = 0,00 | circle
0e01 <= phi <= 0,40 ! arnnulus

0+41 <= phi <= 0,99 ! circle
0,96 <= pni <= 4,00 ¢ annulus

5.0 0.00 1 circle
0,01 0,93 3 annulus

0.54 .88 ! circle
. 0.89 4,06 { annulus

16.0 ik = 0,00 | circle
Q.01 <= gni <= 0,61 ! asnnulus

D.62 <= #hi 0.83 ! circle
0,84 <= gni 4,00 } annulus

59




Seme vaelues a5 Teble 4 ewxcert Kb = 700000 {(this value
is close to the instability boundarw)

dqesdband/eccentricity circle/snnulus redions

0.1 =i = 0.0 | circle
0,01 <= pni <= 0.19 ! annulus

0,16 <= pni <= 4,00 ¢ circle

0.5 i = 0.0 & circle
0,01 <= whi <= 0.32 | snnulus

0,323 <= phi <= 4,00 ! circle

0.9 #ni = 0.0 i circle
0,01 <= phi <= 0,42 ! annulus

0,43 <= pni <= 4,00 | circle

1.0 #l = 0.0 i circle
' 0.01 <= phi <= 0,44 | annulus
Q.45 <= ghi <= 0,99 } circle

1.00 <= phi <= 4,00 ¢ annulus

2.0 #nil = 0.0 1§ circle
0,01 <= phi <= 0,59 ! snnulus

0:.80 <= pni <= 0,99 + gircle

1.00 «= ghi <= 4,00 { arnnulus

3.0 il = 0.0 i circle
0.01 <= whi <= 0.86 ! annulus

Q0¢87 = phi <= 0,99 ¢ circle

1,00 <= i <= 4,00 | arnrmalus

10.0 Fhi = 0.0 ¢ circle
0,01 <= phi <= 0,98 t anmulus
Phi = 0.99 § circle

60




Teble &6

Same velues as Table 4 excert Kb = 10 060 000 {am unusaslly
lerde vaelue Tor beering stiffriessr relastive to the other
Crgreameters)

desdoznd/eccentricity circle/annulus regions

.1 il = 0.0 i circle
0,01 <= pghi <= 0.04 ! annulus
Q.03 el = 4,00 !V circle

0,5 =i = 0,0 y circle
0.01 <= pghi <= 0,08 ! annuylus
G,09 <= #hi <= 4,00 ! circle

0.9 #hi = 0,0 P ocircle
Q.01 <= phi <= 0,10 ! annulus
0411 <= rhi <= 4,00 ! circle

1.0 #hi = 0,0 T circle
0.01 <= ghi <= 0,10 ! annulusg
0,11 <= Fhi <= 0,99 ! circle
1,00 <= pni <= 4,00 7 annulus

2.0 i = 0.0 1 circle
0,01 <= ehni <= 0,13 ! arnnulus

0.14 <= ¢ni <= 0,94 { circle
0:93 <= rhi <= 4,00 ! arnnulus

3.0 i = 0,0 { circle
’ 0+01 <= phi <= 0,18 ¢ annuwlus

0:.19 <= shi <= 0,83 ! circle

0+84 <= rhi <= 4,00 ! annulus

1¢.90 rhi = 0.0 1} circle
0,01 <= rFhi <= 0,20 { annulus

0.21 <= phi <= 0,52 | circle

0.53 <= phi <= 4,00 3 zrnulus
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REAL [ <

Coswl Cs
Qe

Cesel Cs
Qs

~d

Tawwle

Trensitions between Bounded ond Unbounded Redgions

(Ce/20%%2 - (Ks+Kb} + iQs 3¥%{1/2) 1 = Csg/2
159

* 10%%é (Ret+Ro) & 10%%&
+ 00 112

« 10 » A4 4

10 1,

20 1.78

235 2.78

.3 4.

a35 qu‘l}

+ 40 7411

= 240

£ 10 %xxXé (Rstk) & 104%%s
+030 + 043
+10 «174
+130 £ 391
+ 20 674
+ 25 1.083

¢+ 30 1.564
+ 30 2.13
+ 40 2.78
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